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1 Summary of program objectives and outcomes 

The goal of this work was to learn and exploit unknown spatio-temporal structure in online photon-limited 

sensing and surveillance data. Photon-limited imaging arises in a wide variety of applications of interest 

to the Air Force, including night vision, space weather, imaging through fog, and spectral imaging. The 

photon-limited video reconstruction problem is particularly challenging because (a) the limited number of 

available photons introduces intensity-dependent Poisson statistics which require specialized algorithms and 

analysis for optimal performance, (b) vast quantities of video data will be collected sequentially, necessi- 

tating fast online algorithms, and (c) unknown and changing environmental dynamics preclude classical 

methods based on known dynamical models. Many current systems sidestep photon limitations by arti- 

ficially restricting the frame rate and resolution of the video, but sophisticated statistical methods allow 

dramatic increases in resolution and improved object identification and detection capabilities. 

We addressed these challenges by developing new tools for learning and exploiting low-dimensional 

signal structured, including sparsity and low-rank structure, from photon-limited data. In addition, we de- 

veloped novel online learning methods that would allow large-scale photon-limited video data to be analyzed 

as it was collected (as opposed to forensic analysis with a considerable time delay). More specifically, there 

were four main outcomes from this work: 

• Improved understanding of the fundmental limitations of compressed sensing (CS) for photon- 

limited imaging. Several engineers and scientists from the optics and signal processing communities 

have suggested that we design novel cameras for photon-limited settings based on the principles of CS. 

Most prior theoretical results in compressed sensing and related inverse problems apply to idealized 

settings where the noise is i.i.d., and do not account for signal-dependent noise and physical sensing 

constraints. Prior results on Poisson compressed sensing with signal-dependent noise and physical 

constraints in [16] provided upper bounds on mean squared error performance for a specific class of 

estimators. However, it was unknown whether those bounds were tight or if other estimators could 

achieve significantly better performance. Our work provided minimax lower bounds on mean-squared 

error for sparse Poisson inverse problems under physical constraints, and demonstrate the CS is not a 

viable paradigm for photon-limited sensing and surveillance. For additional details, see 

X. Jiang, G. Raskutti, and R. Willett, “Minimax optimal rates for Poisson inverse prob- 

lems with physical constraints”, accepted to IEEE Transactions on Information Theory, 

arXiv:1403:6532, 2014. 

• Novel method for photon-limited signal denoising which represents the current state-of-the- 

art. We have developed denoising algorithms for photon-limited images which combine elements of 

dictionary learning and sparse representations for image patches [17]. Our preliminary method em- 

ploys both an adaptation of Principal Component Analysis (PCA) for Poisson noise and our sparsity 

regularized convex optimization algorithms for photon-limited images. A comprehensive empirical 

evaluation of the proposed method reveals that, despite its simplicity, PCA-flavored denoising appears 

to be highly competitive in very low light regimes, as depicted in Figure 2. In this figure, we com- 

pare with BM3D, widely considered to be the current state-of-the-art for image denoising, and other 

widely-used Poisson image denoising methods. For more details, see 

J. Salmon, Z. Harmany, C. Deledalle, and R. Willett, “Poisson noise reduction with non- 

local PCA,” Journal of Mathematical Imaging and Vision, vol. 48, no. 2, pp. 279-294, 

arXiv:1206:0338, 2014. 

• Reparameterizations of photon-limited images. Most photon-limited image reconstruction meth- 

ods optimize a regularized negative Poisson log likelihood to estimate the underlying image intensity. 

http://arxiv.org/abs/1403.6532
http://arxiv.org/abs/1206.0338
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However, at very low intensities, this focus on the image intensity leads to several technical chal- 

lenges related to efficient optimization tools, cross-validation techniques, and empirical performance. 

To combat this, we introduced a novel approach for Poisson image reconstruction that adapts to the 

signal intensity level through a hybrid objective function with useful properties. This method per- 

forms well visually and empirically, and outperforms prior models in terms of RMSE. Our method is 

also amenable to cross-validation for selecting model parameters accurately. 

 
A. K. Oh, Z. T. Harmany, and R. M. Willett, “To e or not to e in Poisson image recon- 

struction”, Proceedings of the IEEE International Conference on Image Processing (ICIP), 

2014. Received award as “Top 10% Paper”. 

 
A journal version of this work is in progress. 

 
• New approaches for online photon-limited video reconstruction and analysis. With streaming 

photon-limited video, it is possible to compute more accurate reconstructions by exploiting not only 

spatial structured, as describe above, but also temporal structure. Such reconstructions are essential 

for subsequent analysis, such as foreground and background separation. However, standard stochastic 

filtering methods (like Kalman or particle filters) are ill-suited for this regime. We developed novel 

online learning methods which are capable not only of accounting for photon limitations, but also 

learn and exploit the underlying scene dynamics. The supporting theory is a unique contribution to the 

online learning literature, while the algorithms are fast and produce state-of-the-art reconstructions. 

 
E. Hall and R. Willett, “Foreground and background reconstruction in Poisson video”, 

Proceedings of the IEEE International Conference on Image Processing (ICIP), 2013. 

 
A journal version of this work is in progress and is detailed below. 

 

 
 

2 Relationship between program outcomes and previous state-of-the-art 
 
The four major outcomes all represent advances on the previous state-of-the-art. 

 
 
Photon-limited CS. The bounds on compressed sensing for photon-limited imaging are the first known 

lower bounds for this problem and highlight the practical challenges of using CS for night vision in USAF 

equipment.  An example of this is depicted in Figure 1.  Specifically, we consider images which are s- 
sparse in a wavelet basis, and st of the s non-zero wavelet coefficients are at a coarse scale. (In many natural 

images, st is large relative to s.) The conventional wisdom of CS tells us that CS is preferable to simply using 

a low-resolution imager – i.e., downsampling the scene (DS) – because CS will recover both the st coarse- 

scale coefficients and the s − st fine-scale coefficients, while a low-resolution imager only allow recovery of 

the st coarse-scale coefficients. Our theory and supporting simulations demonstrate that this conventional 

wisdom is incorrect in high-noise, photon-limited regimes, and DS can significantly outperform CS. 
 
 
Non-local PCA for photon-limited image estimation. As described in the previous section, our method 

for photon-limited image estimation, which leverages ideas from dictionary learning and sparse recovery 

methods, represents the current state-of-the-art in photon-limited imaging. Empirical results shown in Fig- 

ure 2 highlight the improvements possible via the work supported by this grant. 
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Figure 1: Theoretical and empirical rates of downsampling and compressed sensing methods. Plots cor- 
respond to imaging a scene with 2048 pixels using 512 measurements when the scene as s = 10 non-zero 

wavelet coefficients. st is the number of coarse-scale nonzero coefficients which are directly measured by 

the proposed downsampling scheme. We see that at low-intensities, downsampling can yield much lower 

MSEs, but after the intensity exceeds a critical threshold, compressed sensing methods are able to estimate 

all nonzero coefficients accurately and the MSE is better than for downsampling schemes. This effect is 

predicted by our theory. 
 

 
 

 

(a) Original (b) Noisy, PSNR=-7.11 (c) Multiscale partition, 

PSNR=10.97 

 

 

(f) Original (g) Noisy, PSNR=0.31 (h) haarTIApprox, 

PSNR=18.69 

(d) BM3D, 

PSNR=12.92 

 

 

(i) BM3D, 

PSNR=19.30 

(e) NLPCASbin, 

PSNR=15.99 

 

 

(j) NLPCASbin, 

PSNR=23.27 
 

Figure 2: Simulated images (flag in top row, ridges in bottom row) corrupted with Poisson noise with peak intensity 

of 0.1. Our method is NLPCASbin, and its result is a notable improvement over the previous state of the art. 
 

 
 
Reparameterizations of photon-limited images. The reparameterization of photon-limited images al- 

lows fast and accurate recovery with empirical advantages over classical reconstruction approaches. This 
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(a) Truth scene inten- 

sity 

(b) Photon-limited ob- 

servations 

(c) Classical method 

recovery using total- 

variation regularized 

Poisson log-likelihood 

(d) Recovery using 

total-variation regu- 

larization with our 

reparameterization 
 

Figure 3: Denoising results using our reparameterization method. 
 
 
is illustrated in Figure 3, where we recover an image from photon-limited observations using (c) classical 

total-variation regularization of a negative Poisson log-likelihood and (d) total-variation regularization ap- 

plied to our our reparameterization of the Poisson log-likelihood. The primary advance over previous work 

is a new perspective on how regularizers can and should be selected in photon-limited imaging. The classi- 

cal approach is to determine from the outset that the scene will be parameterized by a linear function of its 

pixel intensity values, and then choose a convex regularization function that will facilitate using off-the-shelf 

convex optimization tools to compute an image estimate. In contrast, our approach is far more flexible in 

that regularizers can be applied to non-linear transformation of the image (e.g., its logarithm), giving us ac- 

cess to a much wider array of potential regularizers that can be used with convex optimization tools. These 

regularizers can then be used to improve photon-limited image reconstruction. 
 

 
Online reconstruction of streaming photon-limited video. Our methods for reconstructing photon- 

limited video, particularly separating moving foreground and background from low-SNR data, is novel 

and an advance over the previous state-of-the-art in several respect. Classical stochastic filtering methods 

such as Kalman or particle filters or Bayesian updates [2] readily exploit dynamical models for effective pre- 

diction and tracking performance. However, classical methods are also limited in their applicability because 

(a) they typically assume an accurate, fully known dynamical model and (b) they rely on strong assumptions 

regarding a generative model of the observations. Some techniques have been proposed to learn the dynam- 

ics [20, 21], but the underlying model still places heavy restrictions on the nature of the data. The Kalman 

filter relies on Gaussian noise models, and particle filters exhibit particle degeneracy, making them difficult 

to use in practical settings. 

A contrasting class of prediction methods is based on an “individual sequence” or “universal predic- 

tion” [13] perspective; these strive to perform provably well on any individual observation sequence. In 

particular, online convex programming methods [4, 7, 14, 23] rely on the gradient of the instantaneous 

loss of a predictor to update the prediction for the next data point. The aim of these methods is to ensure 

that the per-round performance approaches that of the best offline method with access to the entire data se- 

quence. This approach allows one to sidestep challenging issues associated with statistically dependent or 

non-stochastic observations, misspecified generative models, and corrupted observations. This framework 

is limited as well, however, because performance bounds are typically relative to either static or piecewise 

constant comparators and do not adequately reflect adaptivity to a dynamic environment. 

Our approach is novel framework for prediction in the individual sequence setting which incorporates 

dynamical models effectively a novel combination of state updating from stochastic filter theory and online 

convex optimization from universal prediction. This framework, and its application to photon-limited video 

reconstruction, is detailed in the next section. 
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3 Online Foreground and Background Reconstruction in Poisson Video 

Many imaging applications such as night vision, infrared imaging, and certain astronomical imaging systems 

are characterized by limited amounts of available light. In these and other settings, the goal is to reconstruct 

spatially distributed and dynamic phenomena from data collected by counting discrete independent events, 

such as photons hitting a detector. More specifically, we can model our observations at time t as 

yt ∼ Poisson(λt ), (1) 

where yt ∈ Zn  is the vector of photon counts across n detectors and λt ∈ Rn  is the intensity of interest (i.e., 
+ + 

the n-pixel scene) [18]. 

We are interested in the case where λt has two components: a dynamic foreground φt which occupies a 

relatively small portion of the scene, and a static or slowly-varying background βt , so that 

λt = φt + βt . 

 
The goal here is to recover an accurate estimate of φt and βt from yt , especially when the photon counts 

are very low and when the underlying dynamics are unknown. 

There exists a rich literature on image estimation and background subtraction methods, and a wide vari- 

ety of effective tools in high SNR regimes. For instance, a common method for object tracking is to form an 

estimate of the background scene, and subtract this from the observation to get an estimate for the foreground 

[15]. Many of these methods make the assumption that the observed pixel values are the true scene corrupted 

with white Gaussian distributed around the true, slowly varying background mean [19], which is untrue both 

by the Poisson observation model and settings with dynamic backgrounds. Alternatively, another technique 

is to learn and track a low-dimensional subspace representation of the background [3]. While such a method 

can be modified for the Poisson setting, simply subtracting this background estimate from the observations 

will still not yield an accurate foreground estimate in the low-light setting. In fact, even if the background 

were known exactly, subtraction will not give a very accurate estimate of the foreground, as shown in Figure 

4. 
 
 

 
(a) Known Background (b) True Scene (c) Poisson Observation (d)   Observation   minus 

true background 

 
Figure 4: Challenges of background subtractions for photon-limited video. The background (a) and a fore- 

ground object in the top right corner form the true scene (b). Poisson observations are then collected from 

the true scene (c). Even if the background was known exactly and subtracted from the observations, the 

resulting image (d) is still very noisy, making accurate inference about foreground objects challenging. 
 

 
 

The photon-limited image estimation problem is particularly challenging because it introduces intensity- 

dependent Poisson statistics which require specialized algorithms and analysis for optimal performance. 

Simply transforming Poisson data to produce data with approximately Gaussian noise (via, for instance, the 
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variance stabilizing Anscombe transform [1, 12] or Fisz transform [9, 10]) can be effective when the number 

of counts is sufficiently high [6, 22]. However, applying these methods to foreground estimation is a difficult 

problem due to the non-linearities induced by the transforms. Specifically, these tools may make it possible 

to estimate λt ,i effectively, but the inverse problem of estimating φt and βt is significantly more challenging 

because of the nonlinear relationship between the unknowns and variance stabilized observations. 

In addition, the dynamic setting presents significant opportunity for improved photon-limited surveil- 

lance. Consider the case in which the temporal dynamics are known exactly. For the Gaussian noise setting, 

the Kalman filter has proved enormously effective. The known dynamics can effectively act as a prior prob- 

ability model for the scene at time t , and once yt has been observed, this prior knowledge can dramatically 

improve reconstruction accuracy even when the number of available photons is small. 

Generalizations of this approach to Poisson noise are possible with particle filters [2], but particle degen- 

eracy is a major practical challenge. Furthermore, classical stochastic filtering methods typically assume an 

accurate, fully known dynamical model; if a dynamical model is learned from data, it is typically assumed 

not to change over time. 

We present an online method which estimates the underlying, time-varying dynamical model, and uses 

this estimate to generate online estimates of the foreground and background video sequences. Our approach 

is based on recent advances in online convex programming and online learning [4, 7, 14, 23]. In particular, 

we use a variant of Mirror Descent [4, 14] which incorporates dynamical model estimates [11]. 

 
3.1 Problem Formulation 

We model the data as Poisson observations of a scene which is mostly background with some dynamic 

foreground. In order to distinguish foreground from background, we assume that the two have discernibly 

different underlying dynamics, and that the foreground obscures only a small part of the background. We 

denote the observation at time t as yt , the background as βt and the foreground as φt . Therefore the 

probability density function of the observation is given as: 
 

d 
p(yt  |φt , βt ) = 

n
 (φt ,i + βt ,i )

yt ,i
 exp 

r
 (φt ,i + βt ,i )

1
. (2) 

i =1 y t ,i ! 
−

 
 

Here, t indicates time index, and i indicates pixel location. Notice that this model assumes that the observed 

scene is the superposition of background and foreground at every pixel. In actuality every pixel would either 

be completely foreground or completely background, but it is difficult to model this explicitly because the 

locations of the foreground pixels would need to be known exactly a priori. Using this model we wish to 

reconstruct βt  and φt  as accurately as possible in a time-efficient manner. 

 
3.2 Dynamic Fixed Share algorithm 

In order to solve the problems of background and foreground estimation, we will use an algorithm called 

Dynamic Fixed Share (DFS) [11]. In this section, we describe the DFS method in a general setting, and it’s 

application to background subtraction problems will be described in the next section. 

DFS takes in streaming observations and a family of candidate dynamic models {Φ(1), Φ(2), ...Φ(N )} to 

produce a sequence of estimates (denoted θ̂t ) with provably low loss. Specifically, at time t we make an 

observation yt , and it induces a convex loss function 

ft (θ) = ft (θ) + r (θ), 

where ft (θ) describes how well a candidate estimate θ fits the observation yt and r (θ) is a regularization 

function. 
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t 

α 

DFS works in two steps, the first being to produce an estimate for each candidate dynamical model Φ(i )
 

at each time step in the following way: 
 

θ̃t +1 = arg min ηt 〈∇ ft (θ̂t ), θ〉 + ηt r (θ) + D(θ1θ̂t ) (3) 
θ∈Θ 

θ̂t +1 = Φ 
(i ) (θ̃t +1). (4) 

 

Here, ηt  is a step size parameter and D(·1·) is a Bregman Divergence. These equations effectively update 

the previous estimate by taking a step in the direction of the negative gradient of ft , while also ensuring 

that the new estimate is well regularized and close to the previous estimate. Once this intermediate estimate 

is found (3), the dynamical model is applied to get the next estimate (4). The second part of DFS is to 

produce a single estimate from all of the sub-estimates produced by individual dynamic models. It does 

this by taking a weighted average of the sub-estimates, with weights based on the accumulated loss of each 

candidate model. 

We characterize the performance of this approach via a regret bound, which quantifies the difference 

between the accumulated loss of our method and the accumulated loss of any comparator sequence θt 

which might be output by a competing, potentially batch, method. It is shown that the estimate produced by 

the DFS method satisfies the following regret bound: 
 

T   
ft (θ̂t ) − min 

T   
ft (θt ) ≤ 

t =1 

O
   

θ1 ,θ2 ,...,θT t =1 

T (m + 1)(log(N ) + 1) 

1 

+ log 
αm (1

 − α)(T −m−1) 

m+1 
  

tk+1 −1 
   (ik ) 

+  min 
2 ,...,tm+1  k=1

 

min 
ik ∈{1,...,N } t =tk 

1θt +1 − Φ (θt )1  , 

 

where N is the number of dynamic models considered, m is the maximum amount of times the optimal 

dynamic models used to describe the comparator sequence can switch, and α is a parameter used in the 

algorithm between 0 and 1, which is an estimate on the fraction of times the underlying dynamic model 

should switch (approximately m/T ).  The final line of the bound measures how well the comparator se- 

quence, θ1, θ2, ..., θT follows the dynamics on m + 1 optimally chosen time segments. This variation term 
finds the best dynamical model in our family and the optimal time points such that the variation term is 

minimized. This means that if the comparator sequence can be appropriately described as a series of a few 

subsequences which each closely follow one of the dynamical models , then the regret bound will be low. 

For more details see [11]. 

It is important to note that we use the DFS algorithm for the background instead of a moving average: 
 

Lt αt −s ys
 

β̂t =   s =1   
Lt 

s=1 
t −s 

 

for some α ∈ [0, 1].  This is important because if the background has some dynamic motion, the moving 

average would perform poorly. If α were set too low, then the background estimate would be heavily 

corrupted by Poisson noise artifacts. On the other hand, if α were very close to 1, the motion of the 

background would cause blur in the estimate. Even if α is chosen in between these two extremes, the 

estimate would not reflect the true background very well as shown in figure 5. 
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Figure 5: Absolute difference between moving average and true background with α = .99. The true back- 

ground has max value of 5, meaning the errors are relatively large. Notice that this image contains both 

errors at the leading edge due to motion, and noise errors from the observation model. Both of these errors 

would adversely affect the foreground estimation performance 
 
 

3.3 Method 

Our first step is to find an estimate the background, so we must first find a loss function for estimating βt . 

We use the negative Poisson log-likelihood function of the observation omitting the yi ! term since it is an 

offset not dependent on β: 
 

d 

fβ,t (β) =     
(
βi − yi log(βi + γ)

) 
. (5) 

i =1 

A small constant, γ is added to ensure numerical stability.  Notice that this is the same loss function that 

would be used if the video sequence was assumed to only have background content. 

We then wish to estimate φt . We again start by using the negative Poisson log-likelihood as a basis for 

the loss function for φt , but now assume access to an estimate of the background, β̂t . 
 

 
d 

− log(p(yt |φ, β̂t )) = 
 

 
i =1 

{ 

φi + β̂t ,i − log 

{ 
(φi + β̂t ,i )y t ,i 

\\
 

y t ,i ! 

 
(6) 

 

Assuming that the background estimate has already been found, this leads to the following data fit function 

for the foreground: 
 

 
d 

fφ,t (φ; β̂t ) = 
 

 
i =1 

{ 

φi − yt ,i log 
{ 

φi

 

β̂t ,i + γ 

\\ 

+ 1 . (7) 

 

This loss function comes from the negative log-likelihood function by subtracting 
Ld

 
i =1 

β̂t ,i + log(y t ,i !) − 

y t ,i log(β̂t ,i ) which is independent of φt .  Again, a small positive constant γ is used to ensure numerical 

stability. 

Finally, we include regularization penalties, rβand rφ. For this application, we use a total variation 

penalty [5, 8], which insures that the estimates are somewhat smooth, as would be expected in natural 

images. This makes the overall loss functions the following: 

fβ,t (β) = fβ,t (β) + τβ1β1TV (8) 

fφ,t (φ; β) = fφ,t (φ; β) + τφ1φ1TV. (9) 

where τβ and τφ are tradeoff parameters between data fidelity and regularization for the background and 

foreground respectively. Notice how this process essentially tries to find a coarse estimate for the underlying 

scene in the background, and then tries to find a foreground which fine tunes this estimate.  These loss 
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β 

2 

+ i i ,t +1 

2 

+ k k,t +1 

N1 β N1 β 

N1 β N1 β 

N2 φ N2 φ 

N2 φ N2 φ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Algorithm 1 Background and Foreground Estimation 

for t = 1, ..., T do 

Observe yt 

for i = 1, ...N1 do 
w̃ 

β
 

i ,t +1 
= w

i ,t exp (−ηfβ,t (β̂i ,t )) 

w 
β λ    LN1 β β 

i ,t +1 
= 

N1 j =1 
w̃ 

j ,t +1 
+ (1 − λ)w̃ 

i ,t +1 

β̃i ,t +1 = arg minβ∈B ηt 〈∇ fβ,t (β̂i ,t ), β〉 + τβ1β1TV + ... 

...1β − β̂i ,t 1 

β̂i ,t   1 = Φ
(β)

(β̃ ) 

end for β̃t +1 = 
L

 β̃i ,t +1/ 
L

 
i =1 

w
i ,t +1 i =1 

w
i ,t +1 β̂t +1 = 

L
 β̂i ,t +1/ 

L
 

i =1 
w

i ,t +1 

for k = 1, ..., N2 do 
φ 

i =1 
w

i ,t +1 

w̃ k ,t +1 = wk ,t exp (−ηfφ,t (φ̂k ,t ; β̃t +1)) 
w 

φ λ     LN2 φ φ 

k,t +1 
= 

N1 j =1 
w̃ 

j ,t +1 
+ (1 − λ)w̃ 

k ,t +1 

φ̃k ,t +1 = arg minφ∈F ηt 〈∇ fφ,t (φ̂k ,t ; β̃t +1), φ〉 + ... 

τφ1φ1TV + 1φ − φ̂k ,t 1 

φ̂k ,t   1 = SoftThresh(Φ
(φ)

(φ̃ )) 
end for φ̃t +1 = 

L
 φ̃k ,t +1/ 

L
 

k=1 
w

k,t +1 k=1 
w

k,t +1 φ̂t +1 = 
L

 φ̂k ,t +1/ 
L

 
 

end for 
k=1 

w
k,t +1 k=1 

w
k,t +1 
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functions, as constructed, are convex which means we can use online convex optimization techniques. We 

will also use the fact that the background and foreground should have different dynamics to help with 

separation and reconstruction. 

The overall procedure is described in algorithm 1. For both of the inner loops, the minimization was 

found by using the FISTA algorithm of Beck and Teboulle [5]. Additionally, a small amount of soft thresh- 

olding is applied to the foreground estimate at each time step, to ensure that ambiguous areas that could 

be considered either background or foreground are removed from the foreground estimate. Without this 

thresholding, these ambiguous areas would appear in the foreground estimate as an underlying haze. It is 

important to notice for the background and foreground we have two slightly different estimates. The values 

denoted β̃t and φ̃t are the filtering estimates, meaning that they are reconstructions for time t using all the 

observations up to time t . The values β̂t +1 and φ̂t +1 are the prediction values, meaning they use all the data 

up to time t to predict the observation at time t + 1. 
 
 
3.4 Experimental Results 

 
 

 

 
(a) True Scene (b) Poisson Observation  (c) Background Estimate (d) Foreground Estimate 

Figure 6: Foreground and background reconstruction at t = 250. The true image (a) has foreground and 

background content, and the observations (b) are extremely noisy. We form a background estimate (c) and 

use it to obtain a foreground estimate (d). Notice the details visible in the foreground estimate such as the 

windows and tail structure of the plane. 
 
 
 
 
 

 
(a) True Scene (b) Poisson Observation  (c) Background Estimate (d) Foreground Estimate 

Figure 7: Foreground and background reconstruction at t = 925. Again notice how the foreground object 

in (a) is basically imperceptible in the observations (b). By estimating the background (c) an accurate 

foreground estimate can be constructed (d) 
 

 
 

To test this method, we created a data set that featured an object moving across a slowly varying back- 
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t 

t 

ground in the following way: 

φ∗ 

 
 

(φ) ∗ 

t  =Φt −1(φt −1) 
β∗ 

(β) ∗ 

t  =Φt −1(βt −1) 
d 

xt =    eT 
r
✶φ,t (i )φ∗ + (1 − ✶φ,t (i ))β∗

1 
ei 

i t t 

i =1 

yt  ∼Poisson(xt ), 

 
where ✶φ(t ),t (i ) is the indicator of pixel i being foreground or not and ei is the i t h standard basis vector . 

This process shows a foreground object being translated through the function Φ
(φ) 

on top of a background 

image moving with dynamics Φ
(β)

. The images were compiled by letting certain pixels be designated as 

foreground object, and everything else being background. Notice, that the algorithm assumes every pixel is 

the addition of foreground and background, but the data used is more realistic in that each pixel is either one 

or the other. 

Each image is 150 × 150, and no pixel has mean value greater than 5, so the video is extremely photon 

limited. For the background, the true underlying dynamics was a subpixel shift of 1/50th of a pixel to the 

top left at every time step. For the foreground the true dynamics is a full pixel shift to the top right for 

the first 500 frames and bottom right for the second 500 frames. The candidate dynamic models used for 
the background were subpixel shifts of 1/50th of a pixel shift in directions of kπ/4 for k = 1, 2, ...8 and 

stationary (Φβ = I ). The foreground candidate dynamics were full pixel shifts in the same directions as well 

as a stationary dynamic. 

Figures 6 and 7 show examples of the DFS algorithm taking the series of Poisson observations, and 

making accurate representations of the foreground and background. It is especially important to notice 

that including the foreground and background dynamics allows for the foreground image to become clear. 

Without incorporating dynamics and regularization, the additional foreground image would simply be the 

transient errors of the background estimation. By including the dynamics in the optimization process, the 

systematic difference of the background estimate can be found to be the foreground object. 
 
 

4    Conclusions 

The research supported by this grant resulted in several innovative methods and supporting theory for 

photon-limited sensing and surveillance. We have developed practical methods representative of the cur- 

rent state-of-the-art with online code actively used by the signal processing community. We have also 

developed theory that highlights the challenges of photon-limited imaging in compressed sensing contexts 

and described the potential benefits of using conventional imagers rather can compressive imagers. In addi- 

tion, we have developed novel theory that characterizes the performance of online learning methods which 

learn and exploit underlying dynamics. These fundamental performance bounds relating to reconstruction 

accuracy and regret bounds associated with sequential processing of video frames guided the development 

of fast and novel computational techniques, and set the stage for further advances in future work. 
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